Exercise 9

In Exercises 9-12, show that the given function $u(x)$ is a solution of the corresponding Fredholm integro-differential equation:

$$
u^{\prime}(x)=x e^{x}+e^{x}-x+\frac{1}{2} \int_{0}^{1} x u(t) d t, u(0)=0, u(x)=x e^{x}
$$

[TYPO: The $1 / 2$ should not be here.]

Solution

Substitute the function in question on both sides of the integro-differential equation.

$$
\begin{aligned}
& \frac{d}{d x}\left(x e^{x}\right) \stackrel{?}{=} x e^{x}+e^{x}-x+\int_{0}^{1} x t e^{t} d t \\
& e^{x}+x e^{x} \stackrel{?}{=} x e^{x}+e^{x}-x+x \int_{0}^{1} t e^{t} d t
\end{aligned}
$$

Subtract $e^{x}+x e^{x}$ from both sides.

$$
0 \stackrel{?}{=}-x+x \int_{0}^{1} t e^{t} d t
$$

Use integration by parts.

$$
\begin{aligned}
& \stackrel{?}{=}-x+\left.x\left(t e^{t}-e^{t}\right)\right|_{0} ^{1} \\
& \stackrel{?}{=}-x+x\left(e^{1}-e^{1}-0+1\right) \\
& \stackrel{?}{=}-x+x \\
& =0
\end{aligned}
$$

Therefore,

$$
u(x)=x e^{x}
$$

is a solution of the Fredholm integro-differential equation.

